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Abstract—An accurate shear deformable theory for the analysis of the complete dynamic response
of curved beams of constant curvature is presented. The equations presented here are very general
in the sense that any problem of curved beam and circular rings can be addressed. It is indicated
that the classical thin beam theory and the Timoshenko-type shear deformation theory are obtain-
able from the present theory as special cases. The present formulation accounts for shear deformation
and rotary inertia and hence is applicable to the analysis of thick curved beams and rings. The
theory assumes parabolic variation for shear strains (hence obviates the use of shear correction
factors as usually done in the case of Timoshenko-type theory) and involves six displacement
parameters of the centre-linc—threc translations and three rotations. It is pointed out that for
certain composite curved beams and rings the in-plane and out-of-plane vibrations are coupled. In
such cases complete analysis, rather than separate in-plane and out-of-plane analyses, is required.
The numerical results presented illustrate the effect of coupling on various vibrational frequencies.

INTRODUCTION

The analysis of circular ring has been a topic of interest to research workers for over a
century. The earlicst work is usually attributed to Hoppe[1]. This topic is still of concern
at the present time because ring clements are important components in many modern
structures. Also the increasing use of fibre-reinforced composite materials in ring-type
structures demands an accurate description of the mathematical model to analyse such
structures. Many authors have contributed to the improvement of our knowledge on the
behaviour of rings-and have systematically investigated the effects of rotary inertia, shear
deformation and centre-line extension on their natural vibration[2-13]. The discussion on
very early developments on the analysis of rings may be found in the work of Gardner and
Bert[6].

Itis evident from the literature that there are three categories of ring vibration problems
namely: purely in-plane vibrations, purely out-of-plane vibrations and coupled in-plane
and out-of-plane vibration problems. Among others, Ambati er al.[2], Davis er al.[3],
Kirkhope[4, 5], and Gardner and Bert[6] have studied the in-plune vibration of rings using
the theories of varied accuracy. Ambati et al.[2] have presented an elasticity solution to the
in-plune vibration problem and have tabulated extensive numerical results. Kirkhope[4, 5]
solved the same problem using the shear deformation theory similar to Timoshenko’s
straight beam theory. Gardner and Bert[6] used the more realistic shear deformation theory,
by extending Levinson's[14] straight beam theory, to analyse the in-plane vibration problem
and also they have presented useful experimental results.

The out-of-plane vibration problem has been studied by Rao[7], Kirkhope[8], and
Bickford and Maganty[9] using Timoshenko-type shear deformation theory. The for-
mulations of Rao[7} and Kirkhope[8] do not account for the variations in curvature across
the cross-section. This deficiency has been corrected by Bickford and Maganty[9]. Thus,
among the results presented so far, on the out-of-plane vibration problem, those of Bickford
and Maganty[9] seem to be the most accurate.

When the cross-sectional shape of the ring is unsymmetrical the vibrations can no
longer consist of purely in-plane or purely out-of-plane motions. Instead each free vibration
is composed of a combination of both. This is so because principal axes of inertia do not
lie in the ring plane. Thus leading to the third category of ring vibration problems. It is
interesting to note that, as will be demonstrated later. the coupled in-plane and out-of-
plane motions may occur when the cross-section of the ring is made up of laminated
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Fig. 1. Dimensions and coordinate system.

construction ; despite being symmetrical and despite having principal axes of inertia lying
in the ring plane. This is so because in the laminated cross-section coupling arises mainly
due to the orientation of individual laminates which make up the ring cross-section.

It is surprising to note that there are hardly any references on the generalized (i.c. third
category) analysis of the rings except the works of Endo[10], Hawkings[11] and Kirkhope
et al.[12). All these works deal with unsymmetrical cross-sections made up of homogeneous
materials. To the author’s knowledge the coupled vibration problem of rings made up of
laminated cross-sections has not been dealt with in the literature. Thus, it is the purpose of
this paper to give an accuratc mathematical model to analyse the generalized vibration
problem of rings madc of laminated construction.

Before proceeding with the present formulation, some pertinent points regarding the
same are in order. [n the present theory shear strain variations arc assumed to be parabolic
(distorted parabola to be more specific) across the cross-section, unlike constant variation
as assumed in the Timoshenko-type theorics. This formulation is based on the author’s
earlier work on plates and shells[15, 16]. The features of the present theory (namely para-
bolic shear strain variation and vanishing shear strain at the intrados and extrados) are
similar to those of Gardner and Bert[6] for the case of in-plane vibrations of rings. However,
the essential and important difference in the present theory and that of Ref. [6] is that the
classical thin ring and the Timoshcnko-type shear deformation theorics can be obtained as
special cases from the present theory whereas, it is not so with that of Ref. [6].

THEORETICAL DEVELOPMENT

Figure 1 shows the coordinate system and the dimensions of the curved element and
the lamination scheme (a list of nomenclature is given in the Appendix). The present theory
has been formulated by completely abandoning the hypothesis of the classical thin ring
theory that the plane sections remain plane and normal. As in most of the displacement
based formulations we start with the following assumed displacement components :

u(x,0,2,0) =ug—z¢

+:z
v(x,0,z,1) = (%) (vo+f.0) + Sy —xup) ~zwy
w(x,0,2,0) = wo+xo. ¢))

Here ()’ = 9( )/a 00 and £, f, and their derivatives are given by
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The preceding kinematical assumptions allow non-uniform shearing of the cross-
sections. It may be said here that u, and v, are the flexural rotations, in addition to the
usual u; and w, terms, and ¢ is the torsional rotation. The strain—displacement relations in
the cylindrical coordinate system are written as[17]

_Cu [ a (c’v +w>_ _gv_v
BT BT a+:/\acd  a/’ &= %:
. _c"t' (a cu _E’_vﬁ+6_rtf
’”‘-5;+ a+z/adld’ Ve = 5% =

_{ a w v +c’v 4
Yo = a+:z/\acd a) oz @)

These are the exact relations unlike the first approximation-type as adopted by Gardner
and Bert[6]. Using egns (1) in eqns (4) we obtain the following strain components relevant
to the present problem:

, , . ” a . a \wy a \x
Eg =10 Uy —xuy—zf - W el Rl T B
' "+f' A o <a+:> '"+<a+:) a (a+:)a¢
atzy =f2a+:z\ , a ,
L) X ] [P — .\” — - e —— ll — e i :
o ( u )f o a<a+:) 0 (a+:) ¢
a+: a
.= | — ) f* —— | x¢p’. 5
Yo- ( u )/ |+(“+:) ¢ ()

At this stage it is worth commenting on some salient features of the present formulation.
In the case of purely in-planc motions (1, = u, = ¢ = y,, = 0) shear strain (y,,) varies
parabolically and is zero at the intrados and the extrados. In the case of out-of-plane
motions (w, = v, = 0) shear strain (y,,) varies parabolically and the most important feature
of coupling between bending and torsion is retained.

However, in the case of out-of-plan¢ motions or coupled in-plane and out-of-plane
motions shear strains do not vanish at the free surfaces though the non-linear variation
is retained. In the author’s opinion, violation of shear free surface conditions has no real
significance on the numerical results as long as the non-linear variation for shear strains is
maintained. Morcover, it is an extremely difficult task to formulate a general theory for rings
satisfying the shear-free conditions without going into complex mathematical manipulations
which would definitely defeat the very purpose of one-dimensional simplified analysis.

Finally, some remarks on the forms of /. (and f,) are in order. Almost any function
the first derivative of which vanishes at +4/2 (and +A/2) and is non-zero elsewhere can be
chosen. Some such functions, in addition to those given in eqns (2), can be found in Ref.
[16]. If we use /. = = (and f, = x) we obtain Timoshenko-type shear deformation theory
and if we usc f; = f, = 0 we obtain the classical thin ring theory. Alternately, we can ignore
the terms associated with u, and v, displacement parameters to obtain the classical thin
ring theory. Since the non-linear variation has been used for shear strain descriptions across
the cross-section there arises no need to introduce shear correction factors, as usually done
in Timoshenko-type shear deformation theory.
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The constitutive relations for the ring material, or for any layer in the case of laminates,
are assumed as

Oy = Crikgs Ty = Cooloxr Toz = Cau¥e:- 6

Strain energy, kinetic energy and the work potential of the external loads, respectively, may

be written as
+
fJ‘JI (1165 + Coovite + Cas¥i:) ( )a df dx dz dt @]

Jffj Pl + 67+ )( )a df dx d:- ds ®)

S = Jf (g ttq +q.we +myd)a dO di. )
i

In the above an “overdot™ indicates differentiation with respect to the time coordinate. The
generalized stress resultants have the following definitions:

(N M2 M) = J J- oa(1.x,2) dx dz
(Now M. M1, 81,) = Haﬂ(l rﬂ,f)(wh) dx dz
(0.0:) = J\I(rll.v o To: f"')( >, dx dz
(My, My.) = J.J‘( — Ty Ty X) dx dz
0. = M- f jm::(":’) dx dz
0. = M.+ M’“ ” (‘””')- dx dz

1"’() = (1"'10‘+A’!():). (‘O)

Using Hamiltons principle we obtain the following equilibrium equations in terms of the

generalized forces:
W [
| a+:z
Q.- (—IN,,“ = —q,+‘“-p|'€'( p )d.\: d-
M—0. = prf: ‘5‘-}) dx dz
Q.= -q,‘+J-thl( :‘) dx dz
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M.-0, = fjpaf,( )dxd-
lM —-M; = mg+pr(-u—tn)( )chd... (1)

The boundary conditions require that one member of each of the following eight pairs or
eight linearly independent combinations of them must be specified at § = const.

Novo; Qutio; Q.owe: M.uy: Mowy; Movy: Mou; M, é.

Using the strain-displacement relations (5) in eqns (10) and carrying out the indicated
integration across the cross-section we obtain the required relations for generalized stress
resultants in terms of displacement parameters as given in Appendix A. Substituting the
stress resultants ineqns (11) we obtain six equilibrium equations in terms of six displacement
parameters of the problem as

I ’

"
D“v'6+D|(,~‘;°~ "D|4W'5’+Dw¢"|'*D|:fl:7+D|3“'|'+Dn%“
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In eqns (12) D,,, G,,. G,,. etc. are given in Appendix B. This completes the formulation of
the governing equations for generalized treatment of the curved beams of constant curvature.

It is to be noted here that for homogeneous and symmetrical cross-sections (D, =
Dy =Dy =D:y = Dys=Dyo= D3y = Dys = D3g =Dy = Ds; =D, =G; =
Pii= P13 = Pry = Pag = P35 = Pas = p1; = 0) eqns (12) uncouple into two sets (three
equations in each set). The first set (eqns (12a)-(12c)) involves the displacement parameters
(rg, wy, ') corresponding to in-plane motions and the second set (eqns (12d){12)) involves
the displacement parameters (1, 4. ¢) corresponding to out-of-plane motion of the ring.
This is so even in the case of laminated cross-sections when the laminate direction
corresponds to the z-direction (Fig. 1(b)).

However, in the case of a laminated cross-section as shown in Fig. H{c) eqns (12)
uncouple into two sets only when the laminate arrangement is symmetrical with respect to
the z-axis. For an arbitrary arrangement of laminates as in Fig. 1(c) eqns (12) have to be
solved simultaneously. Also, we note that such coupling of in-plane and out-of-plane
motions does not occur in the case of straight beams (1/a = 0). For the case of straight
beams eqns (12) uncouple into four sets: (i) eqn (12a) involving only vy ; (ii) eqns (12b) and
{12c) involving only wgy and v, (ifi) eqns (12d) and (12¢) involving only u, and u,; (iv) egn
(12f) involving only ¢.

The equations derived above are general in the sense that any curved beam problem
can be addressed. [t is difficult to obtain the closed-form solutions to arbitrarily supported
curved beams, However, a frecly supported ring renders possibility of the closed-form
solution to equilibrium equations (12). Hence, it is intended to solve the same problem to
evaluate the present theory using the following modal solution:

(gt 06,) = {4, C, E} sin {nf}) cos QU

13
(woa ttg, P) = (B, D, F) cos (nl) cos Qt. (13

Solutions (13) are substituted into eygns (12), in the absence of externally applicd loads
(4. = 4. = my = 0), to obtain the following cigeavalue problem:

Kp = Q*Mp (14)

where K and M are 6 x 6 symmetric positive definite matrices and p' = {4 BCD EF}. The
coeflicients of these matrices are given in Appendix C.

Thus, it is clear that for given ring dimensions and for a given value of # > 2 we
are always solving for six frequencics and the associated modes. These six modes comprise
of two flexural modes, two shear modes, one torsional mode, and one extensional mode.
We understand here, for an uncoupled problem, that out of six frequencies three correspond
to in-plane motion and three others correspond to out-of-plane motion. However, in the
case of the coupled problem three frequencics can still be identified as corresponding
to predominantly in-planc motion and three others as corresponding to predominantly
out-of-plune motion,

DISCUSSION OF NUMERICAL RESULTS

To evaluate the applicability of the present theory some results were obtained for
rectangular steel rings. These results are presented in Tables | and 2. Table 1 shows the
comparison of results from various theories for the in-planc flexural vibration mode. It is
evident that the present theory predicts, in most cascs, very accurate frequencies as compared
to other thin and thick ring theories. It may be observed from Table 2 that the out-of-plane
flexural frequencies predicted by the present formulation are very accurate as compared to
other theories, except in a few cases forn = 2.
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Table 1. In-plane flexural frequencies (Hz) of rectangular cross-section ring (£ =207 GPa; E/G = 2.58;
p=7833kgm™?)

Mode Exp. Ref. [2] Present Ref. [6] Ref. [4] Classical

No. Ref. {13] (% error) (% error) (% error) (% error) (% error)
2 7635 1.7 0.46 -3.6 -~50 10
3 19060 0.5 1.35 -32 0.3 24
a =363 mm 4 32150 0.1 2.02 -30 1.2 41
bla = 0.47934 5 46050 -1.02 1.00 -3.1 1.2 59
hia = 0.11047 6 60 400 - -0.34 -33 0.8 78
7 74 200 - -0.04 -2.7 1.1 100
8 88000 — 032 -22 1.3 122
2 12070 0.9 3.68 -6.7 —-42 20
3 28 650 =30 1.38 -8.8 -55 44
a=32.6mm 4 44750 -33 -0.81 —-6.6 -33 76
b/a = 0.7546 5 60 200 -38 —0.15 —-44 -6 112
hia = 0.12301 6 73900 — 29 -1.0 1.5 153
7 86 300 — 6.7 2.7 4.7 198
8 97950 — 10.6 6.0 7.8 246

% Error = (Experimental value/Theoretical value — 1) x 100.

Table 2. Qut-of-plune flexural frequencies (Hz) of square cross-section ring (£ =207 GPa; E/G = 2.58;
p=T833kgm~")

Mode Exp. Present Ref. [9) Ref. [8]

No. Ref. [13] value % error value % error value % error

2 2605 2564 —1.61 2575 -5 2608 0.12

3 7330 7”3 —-1.47 7254 —-1.04 7359 0.40

a = 41.26 mm 4 13750 13522 —1.66 13576 -1.27 13784 0.25
hfa = 0.18126 5 21450 21137 ~1.46 21213 -1.10 21548 0.46
hia = 0.18126 6 30400 29798 -1.98 29889 ~1.68 30372 -0.09
7 40050 39273 -1.94 39373 -1.69 40024  -0.06

8 50450 49386  -2.11 49479 192 50315 -0.27

2 6620 6437 =277 6491 -1.95 6788 254

3 16 790 16347 -2.64 16520 1.6l 17430 3.81

a = 36.56 mm 4 28 700 28017 —2.38 28 138 -1.96 29857 4.03
hiu = 0.46184 5 41200 40500 -L1.70 40448 183 43121 4.66
hia = 046184 6 53950 53373 ~1.07 53023 -1.72 56767 5.22
7 66 100 65776  —-0.4Y 65660  —0.67 70 567 6.76

8 79 200 78 804 -0.50 78 262 -1.18 84403 6.57

2 10000 9999 384 9710  -2.90 10758 7.58

¢ = 3274 mm 3 23100 22368 -3.47 22498 -2.61 25413 10.01
bla = 0.74914 4 36700 35918 -2.13 35911 -2.15 41072 11.91
hja =0.74914 5 49900 48982 —1.84 49320 -—1.16 56935 14.10
6 62650 62888 0.38 62569 -0.13 72747 16.12

2 13485 12591 -6.63 12649  -6.20 15384 14.08

= 28.76 mm 3 28 100 27192 -323 26945 -4.11 33833 20.40
bja = 1.12989 4 41600 40614 -237 41005 -143 52458 26.10
hia = 1.12989 5 54 500 55045 1.00 54692 0.35 70798 29.90
6 67800 68 709 1.34 68079 0.41 88792 30.96

% Error = (Experimental value/Theoretical value — 1) x 100.

Having evaluated the validity of the present theory we proceed to solve the coupled
vibration problem of a laminated ring. As stated earlier coupled in-plane and out-of-plane
vibrations occur only when the ring cross-section is asymmetrically laminated in the
x-direction (Fig. 1(c)). Hence, numerical results were obtained for a two-layered (0/90
orientation) ring of varicd geometrical parameters. Typical elastic properties chosen for a
lamina correspond to the following :

ELEr =10; E/Gur = E /G =40; v =025
The geometric parameters are shown in the respective tables.

To illustrate the effect of coupling eqn (14) was solved to obtain six coupled vibration
frequencies whereas, purely in-plane frequencies were obtained by solving first three of the
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Table 3. Frequencies (/€ of rectangular cross-section composite ring for various 4 ratios
Q= yl(fddz{’)l ab=2.n=2h/h,=1)

In-plane motion Out-of-plane motion

hib Flexure Extension Shear Flexure Torsion Shear
1/2 0.17002 1.32208 1.92583 0.07591 0.45348 2.65509
0.17084 1.46175 2.03598 0.08582 0.52571 2.48026
1 0.17044 1.04691 1.78621 0.10083 0.48073 2.31664
0.17083 1.46175 2.03598 0.11009 0.51396 1.82655
32 0.17135 0.93849 1.76281 0.10474 0.49273 2.30886
0.17084 1.46175 2.03598 0.11478 0.50326 1.73915

2 0.17256 0.91345 1.76505 0.10512 0.48886 2.34231
0.17084 1.46175 203598 0.11796 0.49252 1.77438

Table 4. Frequencies (2/Q,) of rectangular cross-section composite ring for various A, /h, ratios
Qo= J(EJup)atb=2in=2hib=1)

In-planc motion Out-of-plane motion
hi/h, Flexure Extension Shear Flexure Torsion Shear
1 0.17044 1.04691 1.78621 0.10083 0.48073 2.31664
0.17084 146175 2.03598 G.11009 0.51396 1.82655
2 0.17832 1.3103t 1.90698 0.10475 0.49853 240562
0. 17844 1.63254 2.23900 0.10975 0.5156<4 1.85574
3 018148 1.49150 1.96639 (0.10685 0.30727 244369
0.18152 [.71060 2.334064 0.10990 0.51784 1.91696
4 0.18319 1.60612 2.00737 0.10815 0.51298 246774
0.18321 1.75554 2.39036 0.11019 0.5202¢ 1.97363

Table 5. Frequencies (€2/Q,) of rectangular cross-section composite ring for various o values
Q= JUE S pYiab = 2 hth = L hfhy = 1)

In-plane motion Out-of-planc motion
n Flexure Extension Shear Flexure Torsion Shear
2 0.17044 104691 1.78621 0.10083 0.4%073 2.31664
0.17084 1.46175 2.03598 0.11009 0.51396 1.82655
3 0.36618 1.34616 . 242275 0.25571 0.61144 3.21357
0.36727 2.05224 2.79153 0.26822 0.62463 2.44559
4 0.57265 1.66927 310218 0.42198 0.76670 4.15214
0.57392 2.66817 358872 0.43328 1.77249 3.10357
S 0.79513 2.00544 3.80148 0.59116 0.93514 5.11067
0.79653 3.29503 4.40595 0.59933 0.93752 3.78233

six equilibrium equations, eqns (12a)-(12¢), ignoring the terms associated with ug, 4, ¢
displacement parameters. Similarly purcly out-of-plane frequencies were obtained by solv-
ing the last three of the six equilibrium equations, eqns (12d)-(12f). ignoring the terms
associated with vy, wy, v, displucement parameters. The results are tabulated in Tables 3-
S. In these tables, numbers in the first row correspond to the coupled problem and those
in the second row correspond to the uncoupled problem.

It may be observed from these tables that the coupling does not affect the in-plane
flexural frequencies, whercas those of the extensional mode are severely affected (error
ranging to 65% in some cases). To a lesser extent, as compared to the extensional mode,
other frequencies are also affected by the coupling action. Even for the present case of
E, /Ey = 10 the maximum error in the out-of-planc frequency is 13% and corresponding
errors in the frequencies of shear modes and the torsional mode are about 13 and 16%.
These errors increase as lamina properties become highly anisotropic. There are composites
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for which E, /Ey becomes as large as 20. For such composite rings these errors will be still
higher.

It is a well established fact that, for two-layered composites, the ,/h, ratio is the one
which makes the cross-section more asymmetrical (as regard to elastic properties) or less
asymmetrical depending on its value. As the h,/A; ratio increases the cross-section becomes
less asymmetrical and hence the coupling effects gradually diminish. This is clearly observ-
able in Table 4 in which uncoupled frequencies gradually approach those of coupled
frequencies as the h,/h, ratio increases. In general, the effect of coupling on out-of-plane
flexural and torsional frequencies decreases as the out-of-plane thickness (4) increases, as
the mode number (n) increases. and as the thickness to radius (b/a) ratio increases. Whereas,
the effect of coupling on the extensional and shear modes increases for increasing values of
h, n, and b/a.

CONCLUSIONS

The theory presented above considers parabolic shear strain variations and involves
six centre-line displacement parameters to be determined to obtain the complete solution
of the problem. The careful selection of basic displacement components makes it possible
to obtain the classical and the Timoshenko-type shear deformation theories as special cases
of the present theory. Accurate prediction of frequencics for steel rings ensures the validity
of the present formulation. It is interesting to note that coupling exists between in-plane
and out-of-plane motions for some composite rings. Thus, such structures require the
complete analysis involving all six equilibrium equations. The numerical results presented
in Tables 3-5 for two-laycred rings demonstrate the errors involved in frequency predictions
when a separate analysis is carried out for purely in-plane and purely out-of-planc motions.
The errors are high cnough to demand the complete vibration analysis to be performed.,
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APPENDIX A

Expressions for stress resultants in eqn (10)
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APPENDIX B

D¢finitions of D,,. G, G.,. p.;. . F;) in eqns (12)
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APPENDIX C

Coeflicients of K and M matrices in eqn (14)

n\ n nY n\
Ky = Dy, al’ KI2=DN‘?+DN ) K3 =D, 2

ol o)

G
LR

K|¢=D|:(



a.b.h

C.

Q.,‘ G, Gu
E Ec
Gi1. Gy
it

Ny M. M. M,
“-I:- Qu Q:' Mll

N«‘- M_.‘. QU Q:

n
m,

4 q:
!

ut,w

Ug, Vg Wo
uL v @
x.0,z

€ 80 By
Yous Joze V2
()

Toxs Tor

p
Pu'ﬁu-m/
Q

Generalized analysis of shear deformable rings and curved beams
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APPENDIX D: NOMENCLATURE

mean radius, radial width, out-of-plane width of curved beam
torsional constant

integrated stiffness coeflicients (Appendix B)

elastic modulus and shear modulus for homogeneous material
elastic moduli of a typical layer of composite ring

shear moduli of a typical layer of composite ring

Poisson’s ratio for a typical layer in composite ring

stress resultants as defined in eqns (10)

mode number

applied torsional moment per unit length on centre-line
applied loads in x- and z-direction per unit length
time coordinate

displacements in x-, 0-, and z-direction
displacements of a point on the centre-line
rotations of a point on the centre-line

cylindrical coordinate system

normal strains

shear strains

normal stress in O-direction

shear stresses on 0-plane

density of the material

integrated inertia cocflicients (Appendix B)
radian frequency.
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